

100 GOPS Reconfigurable Desktop System for Embedded Applications

- Multi-million gates reconfigurable desktop machine based on FPMCM
- C++ design entry bit-serial synthesis system
- Visual programming for image processing under Khoros system
- Reconfigurable system hardware:
 - ➤ 1.6M-gate PC add-on board.
 - ➤ 6M-gate desktop.
- A standardizable programming model
- Solve defense computing's grand challenge problems (SAR, ATR).
 Ex. 2D FFT on 4Kx4K images in 1 sec

- ➤ FPMCM-III(400k gates) design:06/98
- ➤ 1.6M-gate board design: 06/99
- Retarget C++ compiler system to Khoros: 06/98
- Image processing library & grand challenge applications: 06/98

PI: Prof. Wayne Dai @UC Santa Cruz

Outline

- ➤ Motivation and Objectives
- ➤ Accomplishments: FPMCM-I, FPMCM-II, PCI Board, Reconfigurable System.
- ➤ Future Work: Hardware, Software, Applications
- ➤ Demo

Motivation

TIER-2 surveillance system(272Mbit/sec)

➤ Solve large scale image processing problems.

Case study: 2-D FFT on a 16 million samples image (4096x4096 32-bit) in 1 second: 64Mbyte/sec

Why 6M-Gate Desktop

- ➤ 2D FFT on 4096x4096 images (32-bit/pixel):
 - ► Mul = 16 $N^2 log_2 N = 3 \times 2^{30}$ Add = $4N^2 log_2 N = 0.75 \times 2^{30}$ in 1 second!
 - ➤ Bases on bit-serial circuit, a 32-bit multiplier:
 - ➤ needs 130 LE (logic element: 4-LUT and flip-flop);
 - ➤ sampling rate is 2MHz.
 - ➤ Result: Only consider multiplier, we need
 # of LE = 209,379

 If we use Flex10K100 (5000LEs): 41 FPGAs
 - ➤ Consider adders and communications: 60 FPGAs.

Objectives

- Problem: FPGA-based systems today are bulky, slow and expensive.
- ➤ Solution: Deliver more compact, more-tightly coupled FPGA-systems using multi-chip modules and vertical interconnect.
- ➤ Objective: Demonstrate the revolutionary potential of MCM technology to create massive FPLDs.

Objectives

➤ Approach: build next 2 generations of devices, ending in 6 million gates FPMCM box..

Accomplishment: FPMCM-I

- ➤ 44k gates FPMCM-I
- ➤ 12 Xilinx 3042 FPGAs connected by an Aptix FPIC with 1024 IOs.
- ➤ FPGAs were rerouted for low-cost flip-chip.
- ➤ 27MHz peak clock rate.
- ➤ 256 user IO.
- Silicon efficiency: 70%.

First silicon-on-silicon FPMCM

FPMCM-I Architecture

- ➤ Star architecture with some direct interconnect.
- Medium-sized FPGAs chosen to minimize cost per logic resource.

Accomplishment: FPMCM-II

➤ 200k gates FPMCM-II: Composed of 4 Altera FLEX10K50.

FPMCM-II Architecture

- ➤ Clique Architecture
- ➤ Internal: 80 bits wide
- ➤ 64-bit to external
- Omit interconnection chip such as Aptix in FPMCM-I
- Drawback: fixed connection

Accomplishment: PCI Board

Board Architecture

Board Design

- ➤ The board can be plugged in the PCI bus of the popular PC (Pentium 166).
- ➤ The commercial PCI controller AMCC is used to reduce the risk during the early development.
- ➤ Two Synchronous memory chips are connected to the FPMCM.
- ➤ A standalone FPGA is used to implement various diagnostic and monitoring functions.

Accomplishment: C++ Bit Serial Synthesis System

Why Bit Serial

- ➤ Most FPGAs are register rich. Bit serial pushes routing away from "x" and "y" dimensions into the "time" dimension. Place and route becomes easy.
- ➤ By not having to worry about routing delays, macros can be "soft" instead of "hard".
- ➤ Time-multiplexing makes the chip boundary less restrictive.
- ➤ FPGA clock periods are heavily routing limited. Bit serial logic naturally pipelines the communication for minimum delays.

Why Bit Serial

Bit-serial Circuits Design

- Highly efficient bit-serial circuits have been manually developed:
 - ➤ adder, substractor, multiplier, comparator, shifter, rounder, and saturater.

➤ Portable, open standard for user-generated application specific libraries.

C++ Design Capture

➤ C++ description example (1D FIR filter):

```
IO interface
              void iD_FIR_core(Interface & bus,
                  Single x[], Single & y, Single a[],
                                                                           signal variables
                  double coef[], int filter_size, int &in, int &out)
                                                                        software variables
                  set_signal_precision(16);
                   for(int i=0; i<filter_size; i++){</pre>
                         if(i==0){
                                                                             signal input
                             x[i] = bus.read(in);
                             a[i] = x[i] * coef[i] + a[i-1];
                                                                            Operator
Hardware
                         } else{
                                                                           overloading
duplication
                              x[i] = delay(x[i-1]);
statement
                              a[i] = x[i] * coef[i] + a[i-1];
                    y = round(a[filter_size - 1]);
                                                                            signal output
                    bus.write(out) = y;
                                       ---- increment sampling clock
                    clocker();
```


Visual Programming Based on Khoros

Input glyphs, then get VHDL description

Visual Programming

Future: Software System

Future: Visual Programming

Future: Hardware Architecture

Future: Desktop System

Conclusions

- Reconfigurable Computing can approach custom hardware performance, and can be re-targeted to specific applications quickly and efficiently.
- ➤ High routability and low IO consumption of bitserial circuits are ideal for adoptive computing system.
- ➤ Multi-million Gates Reconfigurable System, with appropriate programming technology can outperform multiprocessor based systems on a large class of problems.